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Section 1. Zermelo’s set theory

An ontology, or more exactly., a working ontology, is a classification of those things that
we think about and work with. It’s true that when philosophers speak of ontology they
often have in mind a more ambitious project, which is the classification of everything.
However. it’s not hard to expand a humble working ontology inte one that classifies
everything: just add one more category called “Everything else™, or “Other” for short. In
Section 3 of this paper we’ll see that this is more than just a verbal trick and is actually a
very useful step, somewhat like making zero into a number. For now. though, we’ll stick
with working ontologies in the narrow sense.

The naive working ontology of mathematics has categories like numbers, functions,
shapes, spaces, groups, etc., each with many sub-categories. In the nineteenth century, as
mathematics became more abstract and complex, efforts were made to transform this
sprawling informal ontology into a more orderly one based on more fundamental
categories. The culmination of these efforts was modern set theory. But before we come
to set theory proper, let’s take a brief look at an important early step towards this goal of
unification that occurred around 1870 when Dedekind discovered a new and surprising
way to represent irrational numbers as sefs of rational numbers.

The problem of “irrational” magnitudes such as the square root of two had been around
since antiquity. Pythagoras solved it to his own satisfaction by flatly denying that there
are such things." His solution didn’t acquire much of a following, though; after all, the
diagonal of the unit square does have a length. and what is a length if not a number? So
irrational numbers have remained with us ever since — they were called irrational
because they didn’t make sense in terms of counting. The unfortunate geometer, who
couldn’t do without them, had no choice but to accept them as visitors from an alien
ontological category.

Enter Dedekind. What is the square root of two? It’s simply the ser of all ratios whose
squares are less than two. Not an alien in sight. More generally, an irtational number is
the lower part of a division of the set of all rational numbers into two parts, where this
lower part has no last member and the upper part has no first member. >

Reason does rebel a bit at this. How can a set be a number? Sets have numbers, which
are called their cardinalities, but they are not themselves numbers, and even if they were,
the number of things in the above mentioned Dedekind set has no relationship at all to the
square root of two, being in fact infinite. Dedekind won the day, however. Just stick




[\

with my definition, he insisted, and I'll tell you how to add, multiply etc. so that all your
calculations come out right. And so we did, and so they did.

Dedekind’s conceptual invention was one of the first instances of sets being treated as
mathematical objects in their own right, and, because it solved an ancient puzzle, it
became a key step in turning set theory into an accepted branch of mathematics. Though
the logic of sets had been around since Aristotle, logic was generally regarded as a
different enterprise from mathematics, even after Boole formulated his algebra of sets.
By 1880. however, that situation had changed completely, and Cantor, the inventor of
infinite numbers, went so far as to say that set theory is mathematics. the whole of
mathematics! Was Cantor right?

Certainly many people think so today. Set theory did have a bit of a setback when the so-
called new math for children, which was based on set theory, turged out to be a fiasco.
However, if you open almost any advanced mathematics book for adults you’ll find that
everything it says is implicitly grounded in set theory. The reigning ontology of
mathematics has only one basic category: sets. Every mathematical object is a set.
Numbers are sets, functions are sets, spaces are sets, groups are sets, etc. etc. etc.

“But what about the members of these sets?”” you ask. “It’s true that you can take sets of
sets of sets etc., but if you keep going in the other direction, mustn’t you eventually arrive
at things that aren 't sets?”

Actually, no. Zermelo, in around 1900, found a way to get completely rid of non-sets by
founding all sets on the so-called null set, the set without members. We start out with the
null set, written “{}”, and form the set {{}} of which {} is the sole member. then the set
{{{}}} of which {{}} is the sole member, then the set {{{}}.{}} which has the sets {{}}
and {} as members, then on to {{{{}}}, {{}}, {}} etc. etc.

The most fundamental axiom of Zermelo’s and every other set theory is the so-called
axiom of extensionality, which says that the identity of a set is entirely determined by its
membership, i.e. if x and y have the same members then they are the same set. Indeed,
this feature of the membership predicate x ey is basically what defines set theory as such.
To ensure an adequate supply of sets, Zermelo posited several axioms of closure, among
them the unit-set axiom which says that for any set there is another set of which it is the
sole member, the pair-set axiom which says that for any two sets there is a third of which
they are the two members, etc. He also added a very strong assumption in the form of a
meta-axiom ° that involves both sets and the language of sets:

The meta-axiom of separation: Given any property P that can be expressed in set
language, and any set s, there is a subset p of s consisting of all members of s that have

the property p.*

Older set theories had posited that for any property P there exists a set of a// things
having P. However, this stronger assumption was shot down by Russell’s famous
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paradox, which arises when we let P be the property of not being a member of itself. Is
the corresponding set a member of itself? If it is then it is not, but if it is not, it is.

Though there have been, and still are, many versions of set theory, Zermelo’s is the one
that is generally favored today, at least by mathematicians.” Surely one reason is that it
convincingly avoids Russell’s paradox. But another is the simplicity and power of its
ontology. To get a feeling for why some people regard set theory as the ontology of
mathematics, let’s see how it defines whole numbers as sets. But first, a bit of history.

The original set-theoretic definition of (whole) numbers came from Cantor and Frege in
the late 19" century. It begins by observing that for two sets to have the same number of
members means that there exists a one-one correspondence between the members of one
and the members of the other. Cantor called such sets equivalent. We’ll keep this useful
term despite its possible ambiguity, and we’ll write x =y to mean that x and y are Cantor-
equivalent.

All this is fine as far as it goes, but it raises the question that if everything is a set, then
what kind of a set is a one-one correspondence? The standard answer is that it’s a set of
ordered pairs that uniquely matches the members of one set with the members of
another. But, then, what kind of a set is an ordered pair? The standard answer is that the
ordered pair <x,y> of x followed by y is the set {{x}, {x.y}}. But why that particular
set? Well, like Dedekind’s irrational set, it does the job. But is this really a good enough
answer? Wouldn’t the job be done just as well if we defined x followed by y as, for
instance, the set {{x}, {{y},y}}? After all, there is nothing mysterious or irrational
about the concept of x followed by y, so why do we have to encode it as such an arbitrary
structure?

We’ll return to questions like these, but we still have a way.to go in defining numbers
themselves, since all we have done so far is define same number. Cantor and Frege
thought they had what is obviously the right answer, which is that a (whole) number is an
equivalence class of sets under Cantor equivalence, i.e. it is the set of all sets that are
equivalent to some set S.% But this definition, since it involves all sets of a certain kind,
was again rudely shot down by Russell’s paradox, and though Russell and others made
determined attempts to save it in a more complicated form,” it has little appeal today.

What we find in modern textbooks on set theory is a very different kind of definition.
The number n is no longer defined as the set of all n-member sets, but as a certain
exemplary n-member set. These exemplary sets are constructed as follows: We start with
0, which is defined as the set with no members, i.e. the null set {}. The number 1 is then
defined as the set {{}} whose sole member is the null set. Next, the number 2 is defined
as the set whose two members are 0 and 1, etc. etc. The general rule is that the number n
is the exemplary n-member set {0, 1, 2, ... n-1}.

This scheme was originally devised by Dedekind for finite numbers, but von Neumann
extended it to infinite numbers and also coined the term “counter” for sets of this type,
which are now known as von Neumann counters. .




Again, as with ordered pairs, we ask “Is the set {0, 1} really the number 2?7 And again
the usual answer is that the scheme works, so what more do you want? Perhaps what
more you want doesn’t immediately spring to mind. but you are nevertheless feeling a bit
dissatisfied with what you have got. As you progress further through a modern textbook
on set theory, this dissatisfaction is not likely to abate. It’s true that, in the appropriate
context, the newly defined set entities do the same job as their naive predecessors. But
then an automobile, in the appropriate context, does the same job as a horse and buggy.
but must we say that an automobile is a horse and buggy?

Is every mathematical object really a set? Was Cantor right?

There is indeed a great deal that is good and right about set theory. The question is

whether we have to swallow its ontology whole in order to keep what is good and right
about it. In the next section we’ll explore a new way to think about the ontology of sets
that does a better job of fitting the definitions of mathematical items as sets to the items

themselves.




Section 2. The third way

The problems we have so far encountered have to do with the identity of mathematical
items.

Identity is a slippery word.

“What is time?”" asked Augustine in a famous passage in his Confessions. “When I don’t
ask. I know. When I ask, I don’t know.” For “time”, substitute “identity™.

So what is identity? When I don’t ask, [ know. When I ask, well, I do find I have a lot to
say about the subject, but ... OK, I don’t know. Here goes, anyway:

One meaning of identity is found in its adjectival form identical, which means the same
in every way. But, then, what does “the same™ mean? Let’s not ask, at least not yet.

A very different meaning emerges when I show my identity card to an official.
Suddenly I become, in his eyes, that person to whom that card was issued many years
ago, even though today I bear little resemblance to that person.

The identities of people, and of most things in life, survive certain kinds of change but
not others. Consider the following conversation: “That’s John, the man I saw yesterday.”
“But he’s wearing a different hat.” “Never mind, I’'m sure he’s the same man.” The
identity in question is John’s identity as a man, not his identity as a hat wearer. The
magic word here is “as”.

Issues of identity can get murky. Suppose that John had had a sex change the previous
night. Then John would not be the same man. though she would presumably still be the
same person. But what if he-she had also had a brain transplant? Things get murkier.
Fortunately we don’t have to deal with this kind of murk here since we are working in the
much simpler-minded world of mathematics.

We started this essay with irrational numbers and saw how Dedekind’s way of defining
them as sets of rational numbers gave a boost to the then nascent mathematics of sets.
This happened well before the invention of modern set theory, when rational numbers
were simply taken for granted as the members of an ancient mathematical category. But,
after Cantor and Zermelo, rational numbers, like whole numbers and other mathematical
objects, also became fair game for set theory.

We have already seen how Zermelo’s set theory captures whole numbers as von
Neumann counters. Rational numbers are represented in practice by ratios of whole
numbers, which in grade school we called fractions. In set theory, the fraction m/n is
represented by an ordered pair <m,n> of whole numbers which, as we saw above, is
defined as the set {{m}, {m,n}}. Thus the fraction 2 is {{{{}}}.{{{}}.{{}.{{{}}} (try
explaining that to a third-grader!). In grade school. when the teacher tells us that 2/4 =




2, no student raises his hand to complain that 2/4 and % are different sezs. At that age we
know very well that this doesn’t matter because they are the same as numbers, and that’s
what matters. More generally:

Identity is that way of being the same that matters.
We won’t ask what it means to matter, at least not yet.

Since a rational number can be represented by any one of an infinite number of different
fractions, how do we capture it as a set? There is a Cantorian answer and, if you’ll
pardon the expression, a von Neumannian answer.

The Cantorian answer has the same general form as Cantor’s definition of whole
numbers. Recall that he started by defining sets as equivalent if they can be put into 1-1
correspondence, and then defined (whole) numbers as their equivalence classes, a
definition that, as we saw, was shot down by Russell’s paradox and replaced by von
Neumann'’s definition of counters. But a definition of the same form as Cantor’s does in
fact work for rational numbers. Define fractions n/m and n’/m’ to be equivalent
(normally, but incorrectly, written n/m = n’/m’) to mean that nm” = mn’ (now we are
using the equality predicate correctly, since we are taking whole numbers to be von
Neumann counters, which are sets). Rational numbers are then defined as equivalence
classes of fractions under this new form of equivalence. These equivalence classes,
unlike Cantor’s, don’t lead to Russell’s paradox, since they turn out to be quite
unproblematic sets whose existence is guaranteed in Zermelo set theory by axioms that
no one has yet found suspect.

The von Neumannian answer is simpler. Just as a von Neumannian whole number n is a
certain exemplary set with n members, we can define a von Neumannian rational number
r as a certain exemplary fraction that represents r, namely the fraction with the smallest
numerator in its equivalence class. Thus %2 is the von Neumannian rational number
among the equivalent fractions Y2, 2/4, 3/6, etc. Note that, as in the case of von
Neumann'’s counters, this exemplary fraction is uniquely simple and has no serious
competitors. Such obviously superior exemplars are sometimes called canonical.

We’ve just seen that set theory can capture rational numbers in either of two ways, as sets
of equivalent fractions, or as canonical fractions, where capturing means interpreting as
sets. But there is also a third way.

This third way starts out just like the Cantorian way, by defining some notion of
equivalence on a certain class of sets. But then the two ways part company. Instead of
identifying our new objects as classes of equivalent things, the third way creates them by
fiat by declaring that its new kind of equivalence is the kind of sameness that matters.

For instance, when we are dealing with rational numbers, we say that 2/4 = 2, by which
we mean that 2/4 and 1/2 are the same in the way that maiters. John today is wearing a
brown hat, but he is the same man we saw yesterday wearing a white hat, and that is what




matters. 2/4 is a certain number wearing a brown hat and 4 is that same number wearing
a white hat, so to speak. The third way is a kind of deliberate return to our childhood
innocence in using the word “is™, but it’s a return within the adult world of modern logic.

The third way really begins to show its power when we apply it to whole numbers.
Cantor’s definition of same number is obviously right; is has no competitors. The third
way not only agrees that it’s right but goes further to insist that it’s the whole story.

“Wait a minute” you loudly complain “Never mind hats and mattering identities, just tell
me how to point to these weird mathematical objects, or non-objects, that you would call
numbers. What, according to your third way, are the numbers themselves?”

Good question, but let me slightly rephrase it: What, when we take the third way, do the
names “17, “27, “3” etc. refer to? If they don’t refer at all, what happens to arithmetic?
How can we prove that 1+2 = 3 if we can’t even say it? ®

Fortunately, Bertrand Russell. in his so-called theory of definite descriptions, invented a
logical trick that comes to our rescue here. Even though we do take the third way we can
still give numbers their usual names, and “1+2 = 3" still means what it says and is still
provable. Actually, it comes closer to meaning what it says than when it is “encoded” as
a statement about von Neumann’s counters.

Here is how Russell’s trick works:

First of all, names in mathematics are always introduced by definite noun phrases of the
form “The thing x such that D(x)”, where D is a property that applies to one and only one
thing. D(x) is what Russell calls a definite description. For instance, if D is the property
of having no members, which applies to only one set, then the definite description “The
thing x such that D(x)” defines the name *“{}”. Sometimes we think of the whole noun
phrase as having a reference, but, properly speaking, it’s the pronoun “x” that does the
referring, i.e. that is literally the pointer.

Though x does the pointing, it’s the description that does the real work. To take another
example, consider the sentence “The President is out to lunch™, i.e. “The thing x that
Presides is out to lunch.” Another way to say this is “Whatever x may be, if x Presides
then x is out-to-lunch”. Notice that this second sentence contains no nouns or noun
phrases (remember, “x” is a pronoun, and we can regard “out-to-lunch™ as an adjective).
This way of rephrasing noun phrases in terms of definite descriptions can be applied to
any sentence to produce an equivalent noun-free sentence.

Suppose we give a name to the thing that Presides; let’s call it Mr. B. We can than use
this name to considerably shorten the noun-free sentence “Whatever x may be, if x
Presides then x is out-to- lunch”. We first step backwards to the equivalent sentence
“The thing x that Presides is out-to-lunch”. Since we have defined Mr. B as “the thing x
that Presides”,® our sentence now turns into “Mr. B is out-to-lunch”. This is what Russell
had in mind when he spoke of names as shorthand.




Russell’s theory of definite descriptions can be summarized in four observations:
1) Names in mathematics are defined by definite noun phrases.

2) Definite noun phrases can be eliminated in favor of definite descriptions.’

3) This operation is reversible.

4) Definite noun phrases can be abbreviated by names.

These observations don’t always apply in the everyday world where we can, like Adam,
just point to things and say “apple”. “tree” “woman” etc. However, in the simplified
world of mathematics, they would appear to be unexceptionable. I very much doubt that
it is possible to actually do mathematics without names, but, so lo%ng as we are willing to
treat names as shorthand, we can grant Russell that they are unnecessary in principle.

So how does the theory of definite descriptions relate to the third way?

First of all, definite descriptions are inseparably bound up with identity. To definitely
describe something is to identify that thing. For D to be a definite description, two
requirements must be met: first, there must exist an x for which D is true, and second,
this x must be unique, i.e., if D is true of both x and y then x and y are identical; in

symbols, 3x( D(x) & Vy(D(y) = y=x) ).

When Russell invented his method of definite descriptions, the identity predicate “x=y”
was assumed to be unique and absolute, as it still is today in most expositions of logic.
But when identity becomes relative, as it does when we take the third way, then of course
definiteness in Russell’s sense becomes relative too, and this is indeed a major change.

It dictates that before we can say that D is definife we must first say what we mean by
identity. To name an object we must now provide both a description of that object and an
identity predicate with respect to which that description is definite.

Is this the end of things-in-themselves? Are objects no longer objective? 1f so, what
happens to ontology? We'll return to questions like these in the next section.

We still have some unfinished business concerning numbers. Though we managed to
save the essence of Cantor’s definition of number by using his equivalence predicate x=y
as our identity predicate and then using Russell’s trick to give names to those things that
are identified by x=y, the ontology of arithmetic in practice contains not only numbers

but sets of numbers. This presents a problem, since in Zermelo set theory the members of
a set are themselves sets, identified by set identity x=y. not by Cantorian identity x=y. Of
course this problem doesn’t arise when we take numbers to be von Neumann counters,
which are sets, but with Cantorian numbers it is inescapable.




One way to solve this problem is to define a new class of abstract entities called number-
sets by introducing yet another new identity predicate on representative sets, where a
representative set is defined by the condition that no two of its members have the same
cardinality. This new identity says that representative sets x and y are identical if and
only if there is a one-one correspondence between them such that corresponding
members are Cantor-equivalent. For instance, a representative of the number-set whose
members are 1, 2 and 4 is any set {x.,y.z} in which x has one member, y has two members
and z has four members. Any other set {x’,y’.z’} satisfying these conditions is also a
representative and is thus identical to {x,y,z} as a number-set. Note the analogy to
fractions as representatives of rational numbers, which we can push further by saying that
a representative of a number-set is canonical if its members are von Neumann counters.

But is this really a good solution? These so-called number-sets can be made to do the
same jobs as sets of numbers, but are they really sets? One thingis sure: they are not sets
in Zermelo set theory. But haven’t we then fallen back into the quagmire of arbitrary
encoding that the third way was supposed to get us out of? There are depths here that go
beyond the scope of the present paper, but let me briefly inject a passing subversive
thought: Might it be that the concept of number is complementary to that of set in a way
analogous to the complementarity of position and momentum? If we take the third way,
can we only speak literally about one by ignoring or encoding the other?

Let me conclude this section with some reflections about identity and the third way that
apply not only to set theory but to axiom systems in general.

Identity predicates belong to the wider class of predicates called equality predicates
which are not defined by how they function in an axiom system but only by the formal
axioms of reflexivity, symmetry and transitivity — in symbols:

Reflexivity: x=x
Symmetry: x=y = y=x
Transitivity: (x=y & y=z) = x=Z.

One of the most fundamental relationships among equality predicates is refinement. We
say that one equality predicate refines another if it makes finer-grained distinctions. Thus
set identity refines Cantor equivalence, i.e. x=y implies x=y but x=y does not imply x=y.
The converse of refinement is partition. Cantor equivalence partitions set identity, which
itself of course refines any other defined equality in set theory.

The third way has led us to three kinds of objects abstracted from sets: rational numbers,
Cantorian numbers, and number-sets. But can sets themselves be abstracted from more
fundamental entities? Are sets the rock bottom? Does the third way only go up, not
down? Or might it be that set theory can be abstracted from a theory whose identity
predicate is more refined than set identity?
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In Section 1 we noted that the defining axiom of set theory is the axiom of extensionality,
which says that if x and y have the same members then x and y are the same set. no
matter how differently they are defined. Thus the set of all odd numbers less than eight is
set-identical to the set of all prime numbers less than eight, even though being odd is a
very different criterion for membership than being prime.

There have in fact been many diverse proposals to re-define sets so as to take into
account such finer-grained distinctions. Non-extensional sets are sometimes called
intensional sets, though I think that a better word for them is classes, as in classification.
To quote from the Cambridge Dictionary of Philosophy: “The word ‘class’ is sometimes
used as a synonym for ‘set’. When the two are distinguished, a class is understood as a
collection in the logical sense, i.e. as the extension of a concept (e.g. the class of red
objects)”, it being implicit that the concept of red is a part of its identity. If we should
make this explicit, then the resulting class theory would be a refinement of Zermelo’s set
theory, a step down on the third way. We’ll come back to classes'in the next section.

In conclusion, let us reflect on how the third way bears on the concept of a model.
“Model” today is a buzzword whose meaning is often a bit vague, but it does have a
precise technical meaning in logic, thanks to the logician Tarski. His definition is too
specialized for our present purposes, though, ' 50 I would like to propose another that is
better suited to our needs and also, I believe, closer to popular usage.

First of all, I agree with Tarski that to model an axiom system 4 is to describe a
relationship between 4 and an exemplification of what is formally asserted by 4. But for
Tarski, and here is where I have problems, this exemplification is a mathematical object,
and an object of a specialized kind, namely a collection of ordered n-tuples. For instance,
there is a Tarski model of set theory within set theory itself that results from interpreting
xey to mean that the ordered pair <x,y> is in the collection of all ordered pairs <x.y> in
which x is a member of y.

It would be one thing if ordered n-tuples were physical objects like the pieces of balsa-
wood and glue that we make model airplanes out of, but in Tarski modeling the pieces
are theoretical objects that are usually defined within some other axiom system. Thus the
essence of modeling is not a relationship between language and things, but a relationship
between axiom systems, one of which is inferpreted in another.

Interpretation. To interpret an axiom system 4 within an axiom system // means to
identify the primitive predicates of A with defined predicates in /A in such a way that the
axioms of A become theorems of H. The axiom system H will be called the Aost of 4.

What distinguishes models from other kinds of interpretations is that the objects in 4 are
interpreted as objects in A. This is true in the above Tarski model of set theory, since the
modeled predicate xey applies to the two members of <x,y>, which are sets. It is also
true of the counter interpretation of arithmetic, which, though it is not a Tarski model,
should certainly qualify as some kind of model. It is not, however, true of our third-way
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interpretation of numbers, whose Cantorian identity predicate partitions the identity
predicate of set theory. Here, in more general terms, is this distinction:

Model: an interpretation of one axiom system in another whose identity predicate
matches ' the identity predicate of its host.

The first and second ways in set theory produce models, but the third way produces
abstract interpretations. When we interpret arithmetic by defining the arithmetic
operators p/us and times as set-theoretic operators on von Neumann counters, we are
creating a model of arithmetic. But when we interpret them as three-place predicates
whose intrinsic identity predicate is x=y, we are abstracting arithmetic from set theory,
not modeling it in set theory 12 By the intrinsic identity of a predicate P, I mean the least
refined equality predicate that is substitutive in every place of P; the details of this
definition will be spelled out in Section 4. N
Though I have been arguing in favor of abstract interpretations and implicitly frowning
on models, I must concede that models can be very useful tools, and indeed Section 4 1s
mostly about set-theoretic models of relative identity. In dealing with models the
important thing is to not confuse the objects being modeled with the objects in the
ontology of the modeling language. The set {{}} is nof the number 1. What, then, is the
number 17 It’s what is abstracted from one-member sets by Cantor identity. But just
how does this real 1 differ from {{}}? This raises a puzzling question, which is if {{}}
and 1 are really different, then shouldn’t there be an identity predicate that distinguishes
between them? Such a predicate can’t be defined in set theory, but we’ll see in Section 3
that it can be defined in an axiomatic formulation of relative identity theory.




Section 3. Things, identity, and Other

[ began Section 1 by defining an onfology as a classification of things, and a working
ontology as a classification of things that matter. When our full attention is on what
matters, what doesn’t matter disappears into a black hole that goes under many names:
absence, elsewhere, irrelevance, unimportance, nothingness, Other. An ontology that has
an Other, that includes what doesn’t matter as well as what does, will be called complete.

These are rough definitions, but ontology is an elusive concept. Another rough definition
of ontology is a theory of what exists. For instance, the materialist believes that material
things alone are what exist. But where does this leave immaterial things that don 't exist,
such as the things we encounter in dreams? Which raises the question of just what is a
thing? That may sound like a silly question, but here is my answer anyway:

; : T ; < ® .
Thing (n., singular): anything that can be distinguished from something else.

“Whether or not your question is silly, your answer certainly is, since as a definition it is
blatantly circular” you complain.

Indeed it would appear to be circular, B but appearances can be deceiving. In fact it is
not circular when properly translated into the language of mathematical logic. Here is a
famous passage from Martin Buber’s classic book 7 and Thou which, though not exactly
about thing-hood, gives us a hint of how such a translation may be possible.

The attitude of man is twofold, in accord with the twofold nature of the primary
words which he speaks.

The primary words are not isolated words, but combined words.
The one primary word is the combination I-Thou.
The other primary word is I-it.

Thus begins a deep inquiry into the human condition, but this is not the place to follow
Buber in that direction. My reason for bringing up this passage is its surprising claim that
compound words can be more fundamental than their parts. Buber insists that we don’t
start with an / and a 7/ou which then come together into an /-7hou relationship, nor with
an / and an if which then come together into an /-it relationship. but that the relationship
itself is primary and that the word “I” by itself is a broken-off fragment. *

Whatever the merits of Buber’s claim, I bring it up here as a model for a claim of my
own, which is that the word “thing” is a broken-off fragment of the more fundamental
compound words “anything” and “something™. That these words are fundamental is
hardly debatable, since they are two of the four fundamental words of symbolic logic,]3




where they are written as V and 3. With this in mind, let’s reexamine the above
definition of a thing as anything that can be distinguished from something else.

For things to be distinguished, someone or something must distinguish them; let’s call
him, her or it the discriminator. Since discriminators vary both in the power and in the
scope of their discriminations, discrimination is a three-place relationship:

The discrimination predicate: x(y#z) means that x can distinguish y from z.
And then there is the three-place indiscrimination predicate, or relative identity for short,
The relative identity predicate: x(y=z) means x can’t distinguish y from z.

As we saw in the last section the two-place indiscrimination predicate, otherwise known

. : : ; e o
as equality, is defined by the three equality axioms: reflexivity. symmelry and iransilivity.
Our formal definition of relative identity relativizes these axioms by adding to the
equality predicate a third place for the discriminator:

Relative identity axiom 1: x(y=y) =
Relative identity axiom 2: x(y=z) = x(z=y))
Relative identity axiom 3: x(y=z) & x(z=w) = X(y=w)

Since x is universally quantified, it follows from our axioms that everything is a
discriminator. “But isn’t that panpsychism?” you complain. Well, maybe, though I'm
more inclined to think of it as a step towards a universal mathematics of relativity.
However, we will take another look at panpsychism in Section 4.

Discrimination and relative identity are contraries, i.e. X(x#y) means ~x(y=z). and x(y=z)
means ~x(y#z), so when we substitute ~x(y#z) for x(y=z) in the relative identity axioms
we get the defining axioms of the discrimination predicate:

Discrimination axiom 1: ~x(y#=y)
Discrimination axiom 2: ~x(y#z) = ~x(z#y)
Discrimination axiom 3: ~x(y#z) & ~X(z#wW) = ~X(y#W)

Which is the primary concept? Followers of Hegel and Spenser-Brown will certainly opt
for discrimination, but mathematicians and philosophers are usually more comfortable
with identity. I find the two equally primary. However, I do find it easier to work with
the relative identity axioms, which I think of as a simple stand-alone axiom system:

Relative identity theory: The axiom system based on the three relative identity axioms.
These three axioms define the subject matter of relative identity theory, but leave room

for further axioms that say something more about that subject matter. The same is true of
the axiom of extensionality, which defines the subject matter of set theory but leaves
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room for many different kinds of set theory. Similarly for the group axioms that define
the subject matter of group theory, or Hausdorff’s axioms that define the subject matter
of topology. Let’s call such axiom systems fopic-defining. We usually add other axioms
to topic-defining axiom systems to create richer and more useful systems, or what
amounts to pretty much the same thing, we use them to classify structures within richer
axioms systems, for instance topological groups in geometry.

While we’re at it, let’s add equality theory to our list of topic-defining theories.
Equality theory: the axiom system based on the three equality axioms.

After these rather lengthy preliminaries, the time has come to give my silly answer the
more dignified status of a formula in the predicate calculus, which will take the form of a
definition of the predicate Thing(t), read “t is a thing™.

®
Thing defined: Thing(t) & 3x.y( x(t#y) ). In words, for t to be a thing means that there
1s a discriminator X that can distinguish t from something else.

Is everything a thing? “Of course, what else could it be?” you say. But the axioms of
relative identity theory turn out to be non-committal about this, i.e. they are consistent
with either a yes or a no. It will be instructive to see just why this is so.

To say that everything is a thing means that everything satisfies the above-defined
predicate Thing(t) — in symbols, VtIx,y( x(t=y). How do we confirm that this formula is
consistent with the relative identity axioms?

Here is where models come in. To show that a statement S in an axiom system A4 is
consistent with the axioms of 4 it suffices to exhibit a mode! of 4 in a consistent axiom
system B that makes S into a theorem. In fact, any interpretation of A in B in which S is
a theorem will do; this interpretation needn’t be a model, though models are often easier
to work with. Here is a simple interpretation of relative identity theory in set theory that
does the job for the yes answer:

Everything is a thing set model. Let x=y be set identity and define z(x=y) to mean x=y.
Since it doesn’t matter what z is, z(x=y) clearly satisfies the relative identity axioms.

To say that everything is a thing means Vt3x,y( x(tzy) ). Since x(t#y) means ty, and
there exist more than one set in set theory, this reduces to Vt3y( tzy ), in words, for every
set there 1s another set, which 1s indeed the case.

What about the NO answer? There are actually two NO answers: the weaker NO, which
denies that everything is a thing, and the strong NO, which denies that there are any
things at all. To show the consistency of the strong NO we don't actually need a model,
since the three relative identity axioms can be directly deduced from it. Since the weaker
NO is a consequence of the stronger NO, it too is consistent.
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How do we know that the YES model above is actually a model and not an abstract
interpretation? In the last section I defined a model as an interpretation in which the
identity predicate of the system being modeled matches the identity predicate of its host.
This definition calls for some amplification:

First of all, just what do we mean by the identity predicate of an axiom system 4? The
short answer is that it’s the equality predicate in A that satisfies Leibniz ' law:

Leibniz’ law: Substituting equals for equals does not change truth values.

Substitutivity. Leibniz’ law today is called substitutivity. For an equality “="to be
substitutive at X in Sx means that x=x" = Vy.,z...(Sx < Sx’), where Sx is a sentence in

which x, vy, z... are free and Sx is the sentence in which the variable x” replaces x.
®

Leibniz, like everyone else in his time and most people today, regarded the identity
predicate as absolute, and he claimed that universal substitutivity is its defining feature.
However, if we take identity to be relative, we can think of Leibniz’ law as only defining
substitutivity at one free variable.

Identity predicate of an axiom system A4: the (unique) equality predicate that is
substitutive at every free variable in the sentences of 4. Note that this takes the form of
Leibniz’ universal substitutivity confined to the universe of 4.

How do we apply this definition to an axiom system like relative identity theory which
has no identity predicate among its primitives? The answer is that we define it in terms
of whatever primitives there are. This definition has three steps. First we define what I"ll
call the intrinsic identity predicate at x. Second, we use this definition to define the
intrinsic identity of a predicate. Third, we finally we conjoin the intrinsic identities of all
primitive predicates into a single equality. This equality can be shown to be substitutive
at every free variable in every sentence and is thus the identity of the axiom system.

Intrinsic identity at x. Suppose x is free in the sentence Sx. Define the intrinsic identity
predicate at X to be the least refined equality predicate that is substitutive at x.

The fundamental theorem of intrinsic identity: The predicate defined by x=x" &
Vy.z... (Sx<Sx’) is the intrinsic identity predicate at x in S, where y,z... are the other
free variables in S.

Proof: First we note that “=" as defined above is indeed an equality predicate. which
follows quickly from the fact that “<" satisfies the equality axioms for sentences. 7wWe
must then show that “=" as defined above is the least refined substitutive equality at x in
S. Clearly it is substitutive, since x=x" < Vy,z... (Sx<Sx") implies x=x’ = Vy,z...
(SxSx’).  Suppose there were a less refined equality, call it “=", that is also
substitutive at x, i.e. x=x" = Vy,z... (Sx<=8x"). From x=x" < Vy,z... (Sx<=S8x7) it
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follows that Vy.z...(Sx<Sx") = x=x’. Therefore x=x" = x=x", which implies that “="

is not less refined than “=", contradicting our supposition that a less refined substitutive
equality exists. Ergo, “="isit.

Let’s define the intrinsic identity of a sentence to be the conjunction of the intrinsic
identities of its free variables. The intrinsic identity of a predicate P is then defined as
that of any sentence gotten by putting different free variables in all of its places. For
instance, the intrinsic identity of “e™ is the intrinsic identity of the sentence xey.

Theorem: The intrinsic identity of an axiom system 4 is the conjunction of the intrinsic
identities of its primitive predicates. '

This theorem tells us that we can define set identity x=y in terms of the membership
predicate xey by the statement x=x’ < Vy( (xeyex’ey) & (yexsyex’) ). It also tells
us something that sounds almost paradoxical, which is that relative identity theory has an
absolute 1identity predicate!

Quine, in his essay “The Scope of Logic™, ¥ presents a condensed version of the above
construction of the intrinsic identity predicate of an axiom system, which he then uses as
the basis for his claim that the concept of identity belongs to logic. We can grant him this,
so long as we make it clear that the logical concept of identity, unlike other logical
concepts like AND, OR and NOT, comes in an infinite variety of flavors. Any third-way
interpretation of an axiom system has the same AND as its host, but not necesarily the
same identity. Although Quine never uses the term ‘relative identity”, what he has really
shown is that it’s relative identity that belongs to logic. Incidentally, this same essay
contains a very convincing argument for set membership not belonging to logic.

Now that we know what the identity of an axiom system is, we can return to the
definition of a model, which was informally defined in Section 2 as an interpretation of
an axiom system 4 in a host A in which the identity of A4 matches the identity of H. The
third question, then, is what does it mean for two equalities to match?

The short answer is that they agree in their discriminations among everything that is not
Other. Which brings us to the very important concept of Other, to which we must pay a
fair amount of attention before we can get to matching.

So what is Other? As 1 said at the beginning of this section, Other is what doesn’t
matter. But this as it stands doesn’t say very much, since there are many ways in which
things can matter, and all degrees of mattering. But for a start we’ll go to the black-and-
white limit. It will help us to get us there to start out with the concept of a black-and-
white equality. which I’ll call a division.

Division: an equality that is subject to the additional axiom that there exist x and y that
are unequal, and that if any z is unequal to either of them then it is equal to the other. In

symbols, 3x,y(xzy) & ( VX.y,z( x2y = (z=y OR z=y) ).




Theorem. The intrinsic identity of a single-place predicate is a division. >
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Section 4. What exists? What matters? What happens?
To exist: existere (to stand oﬁt)

Existence: t exists for x means ~x(t=x), abbreviated tex

World: The world of x (informal) means everything that exists for x.

Containment: x’s world is contained in, y’s world, written xCy, means that for all t, tex
= tey.

Coextension: x and y have coextensive worlds, written x=y, means that for all t, tcx if

and only if tcy.
s
What are existence and anti-existence?

Rectangular worlds and x and y coordinates.

http://www.gnosticchristianity.com/ch7.htm
William C. Kiefert

" There is all too little sound historical knowledge about what Pythagoras actually said or thought, but this
is one of the livelier stories about him.

% His definition was actually a bit more complex. He defined a real number as any cu/ in the rational
numbers that divides them into an upper and a lower part. Our definition of the square root of two is the
lower part of such a cut, which of course determines its upper part.

’ Sometimes called an axiom schema.

* Instead of thinking of this as a meta-axiom, we can regard it as an infinity of axioms of the same kind, one
for every definable single-place predicate

> In fact there are now a ggod many versions of Zermelo’s set theory, but the differences among them won’t
concern us here.

® More exactly, we say that the set N is a number if there a set s such that for all m, m is a members of N if
and only if m is equivalent to s.

7 Here is why it leads to Russell’s paradox. Consider the number 1, which is the set of all sets having one
member. Now all reasonable sets theories agree that for every set s there is a unit set {s} of which s is the
sole member. Thus the set of all sets with one member is in obvious 1-1 correspondence with the
collection of all sets, whether or not that collection is itself a set. But it is again an axiom or theorem in all
reasonable set theories that the union of all members of a set is also a set, which in the case of the number 1
is the set of all sets. The axiom of separation says that for any property P, including the property of not
being a member of itself, there is a subset of any set that has P. Thus there must exist a subset of the set of
all sets consisting of those that are not members of themselves, which is Russell’s paradox..

Russell and Whitehead, in their heroic epic Principia Mathematica. attempted to get around this problem
by stratifying sets in a way that would, so to speak, reproduce the concept of number on every level, but the
resulting complexities have discouraged potential followers.

¥ Definition is not quite the right word; since the choice of the variable “x” is arbitrary; we can equally well
substitute “Mr. B for “the thing y that presides™.
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? The term definite description is sometimes used in the literature to mean what I am here calling a definite
noun phrase. Whatever terms we use, it’s essential to distinguish between these two linguistic forms.

' What Tarski calls a model should more properly be called a relational model.

" The word “matches™ has a technical meaning that will be defined in Section 3.

* Define x+y = z to mean that the sum of the counters equivalent to x and y is the counter equivalent to z.
This is not a functional predicate in set theory but it is meaningful for any sets x, y and z and becomes
functional when we take = to be Cantorian identity, which is its intrinsic identity predicate. Similarly for
Xy = z.

> REWRITE Well, maybe it is circular, though in the dignified halls of higher mathematics we don’t
say “circular”, we say “recursive”. Strangely enough, it actually is a definition of sorts. Admittedly it
doesn’t tell us what a thing is a// by itself; that’s too much to ask. Rather it tells us what things are
wholesale. 1t says that the criterion for the members of a plurality to be things is that you can tell them
apart. Note that this is non-committal as to who or what does the telling apart. That is, it allows for
different conceptions of identity, which in turn allows, by the above definition of things, for different
conceptions of thing-hood. Thus it would seem that the third way, by relativizing identity, also relativizes
ontology. As the mathematician Gian-Carlo Rota put it, “Identity precedes existence.”

Actually, that’s an over-statement. The truth is that existence in the material world almost always precedes
identity. If you trip over a cobra in the dark and identify it as the garden hose, the magic word “as™ won’t
save you. Much as you might like to turn the cobra into a cobra as a garden hose by choosing some more
agreeable identity predicate, the cobra, who has no desire to become a garden hose, is not likely to
collaborate.

Physical existence has a way of asserting itself that is indifferent to our powers of discrimination. The
same is not true, however, of abstract existence, which, as its name implies, is abstracted from the flux of
being by our powers of discrimination. Take the quality of redness, for instance. If we can’t distinguish red
things as such from other things, then redness as such doesn’t exist for us; it’s nothing. But it we can, then,
by the above definition, redness does exist for us; it is something. Must red physical things exist in order
for redness to exist? Or would redness still exist even if we only see red things in our dreams? These are
subtle and difficult questions, but fortunately we are still in the simple-minded world of mathematics so, as
in the case of John’s brain transplant, we don’t have to deal with them here.

Redness, and indeed any property, can be viewed as a certain way of being the same. 1f x and y are both
red, which we’ll write as Red(x) and Red(y), then they are the same color. Let’s define R(x=y) to mean that
x and y are both red, where we’ll take “R” to be an abbreviation of “AsRedThings™.

" Buber regards the relationships of 1-him and I-her as special cases of I-it. In this I strongly disagree. The
ability to treat a him or a her as an if is the inability to empathize, which is what leads to most of cruelty
and injustice in the world. Also, there are many other primary relationships of which / is a fragment, for
instance /-You (plural), [-us-them, [-we-it etc.

" The other two are AND and NOT, though these can both be derived from NAND, i.e. NOT-AND, which
is perhaps another example of a compound word that is more fundamental than its parts.

' For the sake of readability we are adopting here the common convention that when we assert a sentence
containing free variables, it is implicit that these are universally quantified from the outside. Thus x(y=y) is
shorthand for Vx,y( x(y=y) ) etc.

"7 .. spell out the details.

** Proof ...

" ref

* proof




